Developmental Biology

Developmental biology includes production of gametes, fertilization, development of the embryo, emergence of the adult organism, senescence, and death. Developmental biologists in the department attempt to understand the molecular, genetic, cellular, and integrative aspects of building an organism. Faculty in developmental biology address mechanisms underlying plant, animal and fungal development. They ask how development changed during evolution. They use genomics, biochemistry, microscopy, genetics, and other tools to explore development in a number of model organisms. The breadth of research in development in the Biology Department provides students with an excellent perspective of this highly dynamic discipline in biology.

Daniele Armaleo

Associate Professor of the Practice of Biology

My research centers on the developmental and molecular biology of lichens, well differentiated symbioses between two or three evolutionarily unrelated organisms: specialized fungi on the one hand and algae or cyanobacteria on the... Full Profile »

L. Ryan Baugh

Associate Professor of Biology

We study nutritional control of development in the roundworm Caenorhabditis elegans. We are interested in the signaling pathways and gene regulatory mechanisms that enable the worm to reversibly arrest development and resist stress in response to starvation. We are also interested in epigenetic... Full Profile »

Amy Bejsovec

Associate Professor of Biology

My laboratory explores the molecular mechanisms of pattern formation in developing embryos. We focus on the Wingless(Wg)/Wnt class of secreted growth factor: these molecules promote cell-cell communication leading to important cell fate decisions during the development of both vertebrate and... Full Profile »

Philip N. Benfey

Paul Kramer Professor of Biology in Trinity College of Arts and Sciences

Full Profile »

Daniel P. Kiehart

Professor of Biology

Our intellectual focus is on identifying determinants of cell shape that function during development. Utilizing molecular genetic and reverse genetic approaches in Drosophila, we have shown that conventional nonmuscle myosin is necessary for driving both cell division and post-mitotic cell shape... Full Profile »

David R. McClay

Arthur S. Pearse Professor of Biology in Trinity College of Arts and Sciences

We ask how the embryo works. Prior to morphogenesis the embryo specifies each cell through transcriptional regulation and signaling. Our research builds gene regulatory networks to understand how that early specification works. We then ask how this specification programs cells for their... Full Profile »

H. Frederik Nijhout

John Franklin Crowell Professor of Biology

Fred Nijhout is broadly interested in developmental physiology and in the interactions between development and evolution. He has several lines of research ongoing in his laboratory that on the surface may look independent from one another, but all share a conceptual interest in understanding how... Full Profile »

Zhen-Ming Pei

Associate Professor of Biology

My laboratory is interested in the early signaling events by which plants sense environmental signals and decode to give the appropriate responses. Upon perception of external signals, cell surface receptors trigger an increase in cytosolic free calcium concentration, which is mediated by ion... Full Profile »

V. Louise Roth

Professor in the Department of Biology

In addition to conceptual work on the biological bases of homology, variation, and parallel evolution, my research has focused on evolutionary changes in size and shape in mammals: the functional consequences of these changes, and the evolutionary modifications of ontogenetic processes that... Full Profile »

David R. Sherwood

Professor of Biology

Our research is directed at elucidating mechanisms underlying morphogenetic processes in development. We primarily use the model system C. elegans in our research, and combine powerful genetic and systems biology approaches with live-cell imaging to address three main topics:   Tissue... Full Profile »

Kathleen Kovalevski Smith

Professor of Biology

My current work is a focus on the relation between evolution and development in the mammalian skull. My model system involves comparisons of development in placental and marsupial mammals. These mammals are characterized by different developmental trajectories, extending back to some of the... Full Profile »

Tai-ping Sun

Professor of Biology

The diterpenoid phytohormone gibberellin (GA) plays pivotal roles in regulating growth and development throughout the life cycle of higher plants. Mutations affecting GA biosynthesis or GA response were the key to control plant stature in wheat and rice that led to dramatically increased grain... Full Profile »

Pelin Cayirlioglu Volkan

Assistant Professor of Biology

The long-term goal in the lab is to understand the developmental processes that establish the basic organizational and functional principles of the neuronal circuits in the brain. We investigate how the neuronal circuits assemble, functionally mature, remodel in developmental and evolutionary time... Full Profile »

Gregory Allan Wray

Professor of Biology

I study the evolution of genes and genomes with the broad aim of understanding the origins of biological diversity. My approach focuses on changes in the expression of genes using both empirical and computational approaches and spans scales of biological organization from single nucleotides... Full Profile »